UCSF/UCB Center for Engineering Cellular Control Systems

An NIH Nanomedicine Development Center

PI: Wendell Lim

Co-Pls: Henry Bourne, Bruce Conklin, Tanja Kortemme, Dyche Mullins,

Kevan Shokat, Jack Taunton, Ron Vale, Christopher Voigt,

Daniel Fletcher, Paul Alivisatos, Adam Arkin, Orion Weiner

Nanomedicine challenges

D. Rogers

Can cellular control systems be engineered for therapeutic applications?

Cellular systems are modular

Why engineer cells?

UNDERSTANDING

Elucidate core design principles underlying complex biological function

- Minimal/alternative designs
- tools for precise manipulation of biological systems

(physics, chemistry, etc.: understanding & manipulating system are coupled)

APPLICATIONS

Can we build cells with novel, therapeutic functions?

New generation of therapeutics: cellular machines/devices.

Test bed: Actin-based motility

Complexity challenge: More is different

Test bed: Actin-based motility

I. GUIDANCE SYSTEM (SIGNAL PROCESSING)

II. FORCE GENERATING SYSTEM

OUTPUTS

MORPH. CHANGE

- chemotaxis
- axon guidance
- phagocytosis
- endocytosis

"PROGRAMMABLE"

- Diverse behaviors in different cells
- Rewired by pathogens

Pathogenic Parts

Salmonella Shigella EHEC/EPEC Listeria

- invasion
- movement

Can we program cell movements?

 What are design principles of guidance, polarization systems?

spatio-temporal signal processing

What are design principles of cellular force generation systems?

regulated polymerization, assembly

LONG-TERM APPLICATIONS:

- Redirect cell targeting (axons, wound healing, immune cells)
- Search & delivery particles

"The Cell Propulsion Lab"

1. Reprogram cellular guidance systems

Wendell Lim

- 2. Build alternative force generation systems

 Dyche Mullins
- 3. Build synthetic assemblies capable of regulated shape change or motility

 Dan Fletcher

Toolkit (Mol. Parts) Tanja Kortemme

Assays

Orion Weiner

Modeling

Chris Voigt

UCSF/UCB Nanomedicine Fellows

webpage

Challenge 1 : Reprogramming Guidance Systems

Can we make S2 cells polarize?

- a. Input control
- b. Local positive feedback
- c. Cross-inhibition of front/back mediators

Challenge 2 : Build alternative force generation systems

What is required for a polymer system to move specific loads?

Challenge 3: Build synthetic assemblies capable of regulated shape change or motility

force generating system

assemble vesicles containing guidance and force systems to generate:

- 1) signal induced actin polymerization (ARTIFICIAL PLATELET)
- 2) polarization/motility
- 3) directional motility (SEARCH & DELIVERY VEHICLE)

Toolkit as a basis for design

Molecular Component Toolkit

APPLICATION TO CELL MOTILITY

APPLICATION TO OTHER BIOLOGICAL SYSTEMS (NANOMEDICINE NETWORK)

Types of parts:

- assembly (recognition domains)
- input reception
- information tranfer (kinases, GTPases)
- motility (polymers, motors)
- nanoparticles

Parts optimization:

- inducibility, tunability
- specificity, orthogonality
- characterization (specs)

PROTEIN INTERFACE REDESIGN

CHEMICAL BIOLOGY

Parts linkage, wiring

- scaffolds, adapters
- switches

DEVICE DESIGN

Assays for micro to macro analysis

Apply, develop, & share technologies: Optical microscopy
Force microscopy
Fabrication & assembly

Modeling of control systems

MODELING: Develop simple lattice-based platform for analyzing polarization circuits (Voigt, Arkin,Lim)

What circuits yield stable polarization?

Monte Carlo simulations with simplified energy function

Variables:

- Feedback (sign/strength)
- •cross inhibition
- Number of components
- •Local vs. long-range
- Circuit connectivity

UCSF/UCB Center for **Engineering Cellular Control Systems**

An NIH Nanomedicine Development Center

Reprogram cell guidance systems

Challenge 2

Build alternative force generating systems

Challenge 3

Engineer synthetic motility systems

Our goal is to understand the fundamental design principles of cellular control systems and to apply these principles to engineer cells or cell-like devices with novel "smart" therapeutic functions.

To achieve this goal, we are focusing on cell motility as a testbed system. Our multi-disciplinary team is focused on three engineering grand challenges, shown to the left.

home | grand challenges | technical pillars | investigators | how to join | QB3 |

NIH Nanomedicine **Development Program**